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A computational procedure is detailed where techniques common in the drug discovery processs2D- and 3D-
quantitative structure−activity relationships (QSAR)sare applied to rationalize the catalytic activity of a synthetically
flexible, Ti−NdP ethylene polymerization catalyst system. Once models relating molecular properties to catalyst
activity are built with the two QSAR approaches, two database mining approaches are used to select a small
number of ligands from a larger database that are likely to produce catalysts with high activity when grafted onto
the Ti−NdP framework. The software employed throughout this work is freely available, is easy to use, and was
applied in a “black box” approach to highlight areas where the drug discovery tools, designed to address organic
molecules, have difficulty in addressing issues arising from the presence of a metal atom. In general, 3D-QSAR
offers an efficient way to screen new potential ligands and separate those likely to lead to poor catalysts from
those that are likely to contribute to highly active catalysts. The results for 2D-QSAR appear to be quantitatively
unreliable, likely due to the presence of a metal atom; nonetheless, there is evidence that qualitative predictions
from different models may be reliable. Pitfalls in the database mining techniques are identified, none of which are
insurmountable. The lessons learned about the potential uses and drawbacks of the techniques described herein
are readily applicable to other catalyst frameworks, thereby enabling a rational approach to catalyst improvement
and design.

I. Introduction

A recent analysis1 of the Cambridge Structural Database
(CSD) found that 70 of the most common ligands in organo-
metallic crystal structures account for roughly 70% of the
total ligands reported. Conversely, 19 000 out of a total of
22 000 distinct ligands were reported less than 10 times,
indicating that, in synthesizing organometallic complexes,
chemists favor the same group of ligands. While it is un-
surprising that the chemist’s synthetic toolkit consists of well-
known, well-behaved, and well-characterized ligands leading
to well-understood catalysts, a failure to utilize ligands
outside of this toolkit is extremely limiting. The use of novel
ligands in catalytic systems may open up new possibilities,
for example, for improved activities, selectivities, solubilities,
product polymer tacticity, range of reactants, etc.

Perhaps one of the most striking examples of the benefits
obtained through the use of “uncommon” ligands is found
in the replacement of the ubiquitous phosphine ligand with
the N-heterocyclic carbene (NHC) framework.2-8 Following
the initial synthesis of isolable carbenes,9 similarities were
postulated between the chemistry of more traditional electron-
rich phosphines and the newer NHCs.10-12 Spectroscopic
studies13-14 confirmed the similarities, as both ligand groups
are strongσ-donors and weakπ-acceptors and, therefore,
could be substituted for one another. Today, so-called
“second-generation Grubbs catalysts”, where NHCs have
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taken the place of phosphine, are recognized as generally
possessing both improved reactivities and stabilities com-
pared to the original phosphine-based ruthenium catalysts.5

Needless to say, these benefits would not have been realized
had chemists contented themselves with phosphine-based
catalysts.

Similar success stories can certainly be found among the
19 000 underutilized organometallic ligands,1 not to mention
the possible useful ligands waiting to be discovered among
the essentially infinite variety of ligands not yet utilized at
all. However, even if the search is restricted to the smaller
set of those ligands already studied and therefore found in
the CSD, there still remains the task of separating the few
potentially beneficial ligands from the vast majority of
ligands that are of little catalytic use. The synthesis and
experimental evaluation of tens of thousands of catalysts with
possibly useful ligands is not practical, and while a combi-
natorial technique may improve the utility of such an
experimental approach, this technique is generally of most
use in the area of heterogeneous catalysts.15 Therefore, the
goal of the current work is to evaluate possible computational
modeling procedures that are fast, low-cost, and accurate in
identifying uncommon or wholly novel ligands likely to be
of use in highly active catalysts.

Standing in the way of this goal are a number of
challenges,16 including possible inverse relationships between
activity and selectivity; the difficulty in identifying simple
rules of use to synthetic organometallic chemists; and effects
besides the structure of the catalyst, such as temperature,
catalyst loading, or the necessity of a cocatalyst. However,
despite these challenges, the promise of a computational
determination of catalytic ligand utility is alluring, and some
initial forays have been made into applying computational
techniques to rationalize the activity of organometallic
catalysts. The most common approach, 3D-QSAR (quantita-
tive structure-activity relationship), appears in, to date, only
three published reports,17-19 demonstrating the youth of this
line of work. 3D-QSAR is routinely employed in the
computer-aided drug discovery field, where the “3D” indi-
cates that properties relatable to activity, such as steric bulk
and atomic charges, are calculated from the 3D geometries
of the species of interest. Using the comparative molecular
field analysis (CoMFA) variety of 3D-QSAR,17 the enan-
tiomeric excess (rather than activity) of chiral, copper-

containing Diels-Alder catalysts were correlated primarily
to the steric properties of the catalysts, with lesser contribu-
tions noted from the electrostatic properties. CoMFA was
also used18,19to explain the ethylene polymerization behavior
of (primarily) zirconocene catalysts, based on not only sterics
and electrostatics but also on the LUMO and local softness
fields as predicted by density functional theory (DFT).
Properties calculated semiempirically were correlated20 to
activities of iron-tetraphenylporphyrin complexes using a
2D-QSAR approach, where “2D” indicates that the connec-
tivities of the complexes, rather than explicit structures in
3D space, are used to rationalize activities. A 2D-QSAR
approach, again using DFT-calculated properties, was also
used to investigate ruthenium metathesis catalysts.21 This last
study is particularly noteworthy as not only were the
independent properties (i.e., the chemical descriptors calcu-
lated from the catalyst connectivity) calculated with DFT,
but so too were the dependent variables (i.e., the catalyst
activity or an approximation thereof).

In the studies just mentioned, computational methods were
used to identify trends in ligand characteristics leading to
beneficial catalytic properties. These trends generally take
the form of, for example, “Add steric bulk at this point in
space”. Thus, any newly proposed ligands can be evaluated
using such guidelines, leading to an efficient method for
screening ligands. However, none of these previous studies
provide a means for identifyingwhich ligands should be
screened, and thus, the problem of separating the small
number of potentially useful ligands from the huge number
of useless ones remains. In the current work, therefore, we
propose coupling both 2D- and 3D-QSAR approaches, which
rationalize ligand characteristics and provide patterns con-
tributing to highly active catalysts, with another technique
routinely employed in the drug discovery process: database
mining.

Although database mining is not entirely unknown in the
organometallic arenasit has been previously used, for
example, to identify statistically common, and therefore
ostensibly favorable, intermolecular interactions in crystal
structures22sthis study is the first where database mining is
used to search for ligands that may prove useful in catalytic
species. The approach taken is to mine databases for
structures “similar” to ligands found in known, highly active
catalysts. Similarity is defined in this work in two ways. In
the first, a simple comparison of connectivity is made, thus
identifying, for example, the two pentacycles imidazole and
cyclopentadiene, or Cp and MeCp, as similar. In the second
approach, similarity is based on general molecular properties,
such as surface area or number of hydrophilic centers, and
therefore, two ligands with entirely different structures can
be considered similar. This latter, more general measure of
similarity has been used recently23 to categorize ligands based
on DFT-calculated quantum mechanical descriptors, although
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the use of these categories in proposing new catalysts was
not discussed. The first, more specific definition of similarity
is very familiar to synthetic chemists, and therefore, in a
sense, this database mining procedure is merely an automated
means to propose ligands that could be arrived at by any
chemist with a pencil and a pad of paper. The second
measure of similarity, however, has been used with the goal
of proposing novel ligands unfamiliar in shape, but with
pleasantly familiar properties, such as high activity.

In order to use these three drug discovery toolss2D- and
3D-QSAR and database miningsto rationally design orga-
nometallic catalysts, it will be beneficial, and indeed neces-
sary in 3D-QSAR, to study series of related compounds
where a central motif is preserved, with changes in activity
brought about by modifications around, rather than within,
this core. This philosophy is no different from traditional
approaches used to improve catalysts,24-28 where many
compounds are largely identical, save for the addition of,
e.g., steric bulk or an electron-withdrawing group, to
investigate the effects of sterics or electrostatics, respectively.
Indeed, the computational drug discovery tools explored in
the current and similar studies17-21 merely provide a sys-
tematic manner in which to rationalize the effects of structural
variation, with the added benefit of providing insight into
complicated, multivariate effects by using statistical tech-
niques such as principal component analysis (PCA) or partial
least-squares regression (PLSR).29

The central structural motif chosen in the current work to
test the utility of computational drug discovery techniques
in catalyst design is the cyclopentadienyl-titanium phos-
phinimide (Ti-NdP) complexes of Stephan et al.,30 il-
lustrated schematically in Figure 1 and described in detail
in Table 1. The catalysts in this system are not only effective
ethylene polymerization catalysts but also possess three
potential modification sites, affording the flexibility necessary
to successfully engineer improved catalysts. From the
experimental work,30 only the titanium-based species whose
activities were measured under the “MAO/a” co-catalyst
conditions were included to eliminate uncertainty due to
variation in experimental conditions. In principle, any

property can be related to structure with a 2D- or 3D-QSPR
approach, such as the polydispersity index, the average
weight of polymer produced, or the amount of enantiomeric
excess produced.17,31 However, in the current work, the
property of interest to be correlated with structural variation
is activity, defined as the amount of polymer, in g/mmol/h/
atm, produced by each catalyst.

In this work, the catalytic system described in Table 1
was used as a testing ground to investigate the possibility of
applying computational drug discovery tools to select ligands,
from among a large database, likely to yield highly active
organometallic catalysts. The software implementing these
drug discovery approaches was used in a “black box”
fashionsthat is, without any code modification. In addition,
all chosen software is freely available, at least on a trial basis,
and fairly straightforward to use. These characteristics are
all desirable in a field as new (see above) as the application
of drug discovery approaches, originally intended for ex-
clusively organic systems, to organometallic systems. Les-
sons learned from this black box approach can be used to
guide future efforts to refine the specific techniques used to
mix the two disciplines of organometallic catalysis and
organic drug design.

This work is organized as follows. After a description of
the technical details of the pieces of software chosen,
information is given concerning the construction of models,
using 3D-QSAR, to rationalize the catalyst activities given
in Table 1; a similar treatment for models constructed with
2D-QSAR follows. Next, the specifics of the database mining
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Figure 1. General template for the catalytic system studied. Cp′ indicates
any species with a cyclopentadienyl ring; X may be Cl, Me, or CH2SiMe3.

Table 1. Details of the Catalysts Modeleda

compound X Cp′ R activitye

10 Cl C5H5 Et 13
11 Cyc 42
12 iPr 49
13 iBu 652
14 Ph 34
15 p-MeC6H4 35
16 p-CF3C6H4 31
17 p-FC6H4 34
18 p-MeOC6H4 47
19 C5H4SiMe3

iPr 16
20 iBu 494
21 C5Me5

iPr 30
22 iBu 1400
23 Indenyl iPr 28
24 iBu 425
25 C5H4(tBu) Cyc 46
26 iPr 16
27 tBu 881
28 C5H4(nBu) tBu 2000
44 Me C5H4(tBu) tBu 853
62 CH2SiMe3 C5H5 Ph 765
CpTiCl3b Cl Cl 9f

CGCc C5Me4SiMe2
tBud 630

a Details and numbering from ref 30.b This structure is as written and
does not contain the NdP motif. c The constrained geometry catalyst,
C5Me4SiMe2N(tBu)TiCl2; see ref 32.d This is a singletBu group, rather
than P(tBu)3. e In g/mmol/h/atm.f Reported as<10.
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procedures are given, as are resulting ligands proposed to
yield highly active catalysts when grafted onto the Ti-Nd
P framework. The activities of new catalysts created in this
fashion are predicted using the 3D- and 2D-QSAR models
in the next section. On the basis of these predicted activities,
a discussion is offered about the strengths and drawbacks
of the three drug discovery tools in the context of organo-
metallic catalyst design, and conclusions, particularly about
the future of this line of research in general, are offered.

II. Computational Methods

Geometry Optimization. Given the lack of X-ray crystal
structures for many of the catalysts given in Table 1, the geometries
of all structures were optimized using DFT as implemented in
NWChem 4.7,33 specifically the PW91 functional34 in conjunction
with a LANL2DZ ECP basis set for Ti, Cl, Si, and P atoms and
with a 6-311 g+* basis set, as implemented in NWChem, for all
other atoms. The fine keyword was invoked to define grid size; all
other options were left at their default values. The effect of the
choice of functional and basis set on constructed structure-activity
model accuracy is beyond the scope of this work, although results
(not shown) indicate that calculated predicted activities are largely
insensitive to variations in geometry on the order of 0.2 Å. PW91
has been shown35 to generally provide excellent geometries for
organometallic systems. Moreover, the intention of geometry
optimization prior to model construction is consistency, rather than
strict agreement with experimentally characterized geometries.

3D-QSAR. The free program SOMFA (Self-Organizing Mo-
lecular Field Analysis)36 was used for construction of 3D-QSAR
models. The catalysts in Table 1, as well as all newly proposed
catalysts, were centered in a cube measuring 50 Å per side. Two
fields can be evaluated in SOMFA: sterics and electrostatics.
Attempts to rationalize electrostatic patterns, based on calculated
Mulliken atomic charges, did not prove successful, and therefore,
only the steric field was included in this study. The original
experimental researchers30 of the Ti-NdP system studied did note
that patterns in molecular shape, rather than electrostatics, seem to
be largely responsible for determining activity. For other systems
where partial charges are likely to be influential, predicted activities
could benefit from using this SOMFA field. Returning to the present
system, the steric field was evaluated using a grid with 0.25 Å
resolution. Proper alignment of molecules is a well-known prereq-
uisite for successful 3D-QSAR models. Therefore, all molecules
were aligned, using10 as a template, with the shareware program
VEGA.37

2D-QSAR.The molecular descriptors that serve as the input for
the construction of 2D-QSAR models were calculated using the
Web-based program E-Dragon,38 which allows for the evaluation

of over 1600 properties. File format conversions between the
Cartesian coordinates obtained with NWChem and the Structure
Data Format (SDF)39 required by E-Dragon were performed with
the shareware program Mol2Mol.40 Following descriptor calculation,
models were generated using the PLSR capabilities of the demo
version of The Unscrambler 9.6.41 In order to build an effective
2D-QSAR model, it is advisable to first pare down the list of
descriptors to remove redundancies, collinearity, and properties that
do not vary greatly across the compound set.42 To this end, models
were built from three different sets of calculated descriptors: the
complete set, the set after treatment with a Web-based unsupervised
forward selection (UFS) algorithm,43 and the set after treatment
with a Web-based genetic algorithm (GA).44 Prior to PLSR, all
descriptors were mean-centered and normalized to prevent descrip-
tors with numerically large values from dominating the 2D-QSAR
model.

Database Mining. In order to propose new ligands for replacing
the R and Cp′ groups of the Ti-NdP framework, two database
mining approaches, each based on a different measure of similarity,
were used. For the first, a structural similarity search, the
implementation of the freely available Chemmine program was
used.45 The “atom pairs” search method gave all of the results of
the “atom sequence” search method and more and was therefore
chosen as the default searching method. Structural similarity in this
program is measured by the Tanimoto coefficient,46 which ranges
from 0 (no similarity) to 1 (identical). The minimum cutoff for
this coefficient was determined ad hoc to give a sufficient number
of hits. Hit lists were further culled on the basis of structural
considerations (e.g., the presence of an aromatic pentacycle for
proposed Cp′-type ligands). The second database mining method,
based on a more general measure of similarity, will be described
in greater detail later but, to summarize, involves the calculation
(again using E-Dragon) of descriptors for all structures in a database,
the identification (using PLSR in Unscrambler) of the 2D-QSAR
descriptors most strongly correlated with activity, and the selection
of ligands in the database with high values for these descriptors.

Compound Databases. Two databases were mined for ligands
that may potentially lead to improved catalysts when attached to
the Ti-NdP framework. These databases are freely available from
the Development Therapeutics Program of the National Cancer
Institute website47 (indeed, quantities of the actual compounds
themselves are also available). The main database in this work,
termed Plated, consists of over 140 000 compounds that have been
evaluated as potential anti-HIV and anti-cancer agents. A subset,
termed Diversity, contains 1990 compounds and serves as a
representative sample of the structural diversity present in the larger
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Plated set. The choice of these databases was based solely on their
availability; any database can of course be mined.

Statistical Metrics. Standard statistical means, detailed in the
Supporting Information, were used to evaluate all QSAR models
constructed.

III. Results

3D-QSAR.As 3D-QSAR requires compound geometries
as input and as not all catalysts in Table 1 were characterized
by X-ray crystallography, the geometry of each compound
was calculated with DFT. The accuracy of this procedure
compared to experiment can be evaluated for those catalysts
that do have crystal structures, namely11-13, 21-23, 27,
and28. For these compounds, bond distances, specifically
the Ti-Cl, Ti-N, and N-P distances, are calculated with
an RMSD of 0.052 Å and a maximum error of 0.090 Å.
Similarly, bond angles (Cl-Ti-Cl, N-Ti-Cl, Ti-N-P, and
N-Ti-Cpcentroid) are calculated with an RMSD of 3.2° and
a maximum error of 10.5°. Whether these calculations are
of “sufficient” precision is somewhat subjective, but results
(not shown) indicate that calculated predicted activities are
largely insensitive to variations in geometry on the order of
0.2 Å.

Nevertheless, despite any fortuitously small influence of
inaccurately calculated geometries, it is generally advisable
that all structures upon which a 3D-QSAR model is based
be aligned as closely as possible. Testing, detailed in the
Supporting Information, revealed that alignment of Cpcentroid,
Ti, and N points between the various catalysts gave the
closest overlap. In addition, this alignment yielded the best
statistical measurements of predicted activities (r2 ) 0.666,
q2-CV ) 0.216), and therefore, this alignment scheme was
chosen as the basis for all 3D-QSAR models discussed. A
visual representation of the 3D space covered by this model
is shown in Figure 2.

Following alignment, the catalysts of Table 1 were divided
into training sets, used to build the 3D-QSAR model, and
test sets, used to evaluate the predictive capabilities of the
model for species not included in the model itself. The test
sets are described in Table 2, as are the statistical metrics
for each. Sets 1-5 were each constructed by excluding five
randomly selected catalysts prior to model construction,
whereas Set 6 consists of the exclusion of the two structures
that do not fit the Ti-NdP framework,CGC andCpTiCl 3,
as well as the two structures where the X groups are not Cl.
A few observations about the models constructed from the
training/test set splits described in Table 2 can be made. In
general, these models are fit as well as the model constructed
above for all species (r2 ) 0.666), and, indeed, models based
on Sets 3 and 4 seem to be even better. More noticeably,q2

values are greatly improved compared to above (q2-CV )
0.216), particularly for the models based on Sets 3 and 6.

The significance of proper training/test splitting has
previously been discussed by Kubinyi.48 An exhaustive

evaluation of models constructed following exclusion of all
possible four- and five-membered test sets (8855 and 33 649
distinct splits, respectively), as suggested,48 cannot be
performed in a timely manner with SOMFA. One alternative
is to use a categorization approach such a PCA23 in order to
identify and properly address catalysts with truly outlying
activities. Instead, the approach chosen in this work is to
use all six models described in Table 2, with the modifica-
tions discussed below, to investigate how much predicted
activities for new catalysts vary on the basis of the training/
test set split choice.

Initial use and testing of the models in Table 2 revealed
that one effect not yet addressed often has a profound effect
on the accuracy of predicted activity, namely the fluxionality
of the Cp′ ligand, often termed “ring whizzing”. As illustrated
in Figure 2, only one stereoisomer of each species in Table
1 is incorporated into the models of Table 2. This is most
obvious for28, where thenBu group can be seen in the lower
right of Figure 2. According to Table 1,28 is the most active
catalyst, obviously due to the presence of this alkyl sub-
stituent on the Cp ring. However, if a “new” catalyst were
formed by rotating the Cp′ ligand of28 in the plane of Figure
2, as is possible to at least some degree, the activity of this
“new” catalyst predicted by any of the 3D-QSAR models in
Table 2 would fall far short of the experimental activity of
2000, because these models reflect the fact that annBu group

(48) Kubinyi, H. In QSAR & Molecular Modelling in Rational Design of
BioactiVe Molecules; Proceedings of the 15th European Symposium
on QSAR & Molecular Modelling; Istanbul, Turkey, 2004; Sener, E.
A., Yalcin, I., Eds.; CADDD Society: Ankara, Turkey, 2006; p 30.

Figure 2. Alignment of the catalysts of Table 1, aligned at Cpcentroid, Ti,
and N. The coloring scheme is as follows. Cpcentroid, orange; C, green; Ti,
yellow; Cl, purple (to the left and right of Ti); Si, light blue; N, dark blue;
P, purple (above Ti); O, red; F, gray.

Table 2. Details on the Test Sets Used for the 3D-QSAR Models

set compounds excluded r2 q2-Test RMSD

1 12, 14, 25, 62, CGC 0.669 0.373 265
2 13, 14, 22, 25, 62 0.657 0.507 403
3 13, 15, 18, 22, 24 0.777 0.626 326
4 14, 17, 20, 27, 44 0.765 0.392 304
5 19, 20, 25, 44, CpTiCl3 0.638 0.485 256
6 44, 62, CpTiCl3, CGC 0.663 0.634 245
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only in the spatial position shown in Figure 2leads to a
high activity. In order to rectify this shortcoming, the
asymmetric Cp′ ligands of the catalyst in Table 1 were rotated
about the Ti-X axis in 72° increments. The five stereoiso-
mers thus produced for each species were then visually
inspected for possible steric clashes with the rest of the
molecule. All new stereoisomers without steric clashes were
assigned the activities listed in Table 1, and new 3D-QSAR
models were built from all acceptable rotamers for each
catalyst, using the same training/test set splits described in
Table 2. The statistical measures of these new fluxional
models are given in Table 3. While all models show
improved internal fits (r2), surprisingly the predictivity of
the test set is worsened for Sets 3 and 6, as measured by
comparing the respectiveq2-Test values with theq2-Test
values of Table 2. However, all other models show significant
improvement with this approach, indicating its utility. Further
improved models could likely be produced if, as has been
done elsewhere,49 data from molecular dynamics were
incorporated to provide a measure of fluxionality more
accurate than the evenly weighted contribution of five
rotamers. Nevertheless, this approximation to a wholly
dynamic 3D-QSAR approach is the most accurate procedure
considered in this work, and therefore, the models described
in Table 3 are deemed the final 3D-QSAR models and will
be used to evaluate the activities of newly proposed catalysts.

2D-QSAR.In evaluating the applicability of computational
drug discovery tools to organometallic catalyst discovery,
one of the challenges is that the former were designed for
druglike molecules, almost none of which contain metal
atoms. This difference was highlighted immediately in the
development of 2D-QSAR models for new organometallic
catalysts, as the freely available program chosen to calculate
molecular descriptors, E-Dragon,38 uses a file format (SDF)
that does not contain a definition for titanium. Given that
this program calculates over 1600 descriptors using a variety
of formulas, modifying the code to accommodate Ti would
likely present a significant challenge. In addition, as this is
an early study of the use of drug discovery tools for
organometallic catalyst design, it was decided to apply all
software in an unmodified, black box fashion to serve as a
foundation upon which future efforts at mixing the two
disciplines could be based. Thus, it was decided to empiri-
cally determine which element described by E-Dragon is
closest to Ti, as measured by the accuracy of predicted
activities. Thus, 2D-QSAR models were generated using the

training/test splits of Table 2 with Ti replaced by 17 different
elements. The best results were found for C and Ag, with
the best RMSDs found for the test sets no. 4-111 and 148,
respectively. The transition metals Cr, Au, Co, Fe, and Ni
were less acceptable, with RMSDs ranging from 182 to 200;
other elements yielded even poorer results. Therefore, for
all 2D-QSAR models described below, Ti was replaced with
C. The effect of this somewhat drastic change will be judged
on the basis of the accuracy of predicted activities, both for
test sets and for newly proposed catalysts.

Another challenge in 2D-QSAR model generation is
choosing which descriptors should be correlated with activity.
To prevent overfitting, where too many variables are used
to build a model, it is necessary to choose descriptors that
are neither redundant nor collinear. In order to eliminate
useless or flawed descriptors, two algorithms were applied
(see above)san unsupervised forward selection (UFS) ap-
proach and a genetic algorithm (GA). As a control, models
were also generated without any descriptor elimination.
Activities for the catalysts in the test sets predicted by the
2D-QSAR models following application of the UFS showed
RMSDs increased by a factor of 1-20 compared to models
built with the entire descriptor set. In other words, the UFS
procedure was too ambitious in paring down the descriptor
list, leading to very poor predicted activities. In contrast, the
models generated following application of the GA showed,
at worst, activities comparable to those predicted with the
entire descriptor set. For all but Set 6, the rmsd of predicted
activities of GA-based models were improved, with the best
improvement, 41%, found for Set 4. This finding clearly
illustrates the benefits of avoiding an overfitted model, and
thus, for all 2D-QSAR models developed below, the descrip-
tor set pared by the GA was used as input for model
generation with PLSR.

In PLSR, potentially correlated variables (i.e., the set of
descriptors calculated by E-Dragon and pared down by the
GA) are condensed into a small number of orthogonal
variables, often called latent variables (LVs) or PLS factors,
consisting of weighted combinations of the E-Dragon
descriptors. The number of LVs chosen should explain as
much variance in the data with as few LVs as possible. In
other words, it is seldom advisable to add another LV if only
a few additional percent of the variance in the data is
explained, as this improvement most often represents modi-
fications to the model to describe only a single compound,
and therefore, the model will likely be inapplicable to
compounds outside of the training set. With this caveat, Table
4 lists the final 2D-QSAR models constructed, using the test
set definitions of Table 2, with Ti replaced by C, and with
the descriptor set culled by the GA.

(49) Melville, J. L.; Lovelock, K. R. J.; Wilson, C.; Allbutt, B.; Burke, E.
K.; Lygo, B.; Hirst, J. D.J. Chem. Inf. Model.2005, 45, 971.

Table 3. Performance of the Fluxional 3D-QSAR Models

seta r2 q2-Test RMSD

1 0.826 0.527 326
2 0.816 0.547 349
3 0.862 0.403 333
4 0.842 0.777 207
5 0.827 0.790 178
6 0.817 0.556 304

a See Table 2 for set definition.

Table 4. Final 2D-QSAR Models Produced

set no. of LVs r2 q2-Test RMSD

1 1 0.483 0.271 313
2 7 1.000 0.066 522
3 10 0.999 0.485 383
4 6 0.965 0.919 111
5 1 0.643 -3.994 796
6 9 0.928 -2.933 803
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Four of the models shown in Table 4s2, 3, 4, and 6sare
fit extremely well, with r2 values of over 0.9. However,
examination of theq2-Test metrics indicates that, despite the
application of the GA and the generation of orthogonal LVs,
most of these fits can be regarded as overfitted. Indeed, the
negative values ofq2-Test for Sets 5 and 6 indicate that the
predicted activities for the test set compounds are worse than
a “model” where each unknown, predicted activity is simply
set to the average activity of the compounds of the test set.
Only the model built from training/test set split 4 indicates
both a good fit of the training set (r2 ) 0.965) and good
predictions of the test set (q2-Test) 0.919). Scrambling the
data prior to model construction, as described in the
Supporting Information, further reveals the statistical validity
of Model 4.

Database Mining. As stated in the Introduction, the
critical hurdle in designing new catalysts with potentially
beneficial properties is identifying the few useful ligands
among the far larger set of useless ligands. To attempt to
overcome this obstacle, two different mining methods were
employed, based on two different definitions of “similarity.”
In addition, two databases were mined and two ligand types
were sought aftersCp′ and R (Figure 1). The overall
procedure is summarized in Figure 3 and will be described
in detail below.

Similarity Search. The first database mining approach
utilized a similarity search algorithm, which simply finds
ligands in the compound database possessing a connectivity
similar to the search target. Perusal of Table 1 suggests that
tBu is the optimum R ligand (cf.19and20, 21and22, etc.),
and therefore, the two compound databases were mined for
structures similar totBu. In the Diversity database, no hits
of >20% similarity resulted, and thus, the far larger Plated
database was mined. This search resulted in 35 hits with

>20% similarity. However, manual inspection of these
ligands revealed that the majority of these hits, while
containing a moiety similar to atBu group, were quite large,
thereby preventing the attachment of three such ligands to
the single phosphorus of Ti-NdP. (The possibility of
replacing three individual R groups with a single tridentate
R group was not considered.) Of the 35 hits, four ligands of
a size comparable totBu were identified, each possessing a
central atom with a single hydrogen atom that could be
removed prior to ligation to the P of Ti-NdP. These four
ligands are shown in Chart 1. At first glance, these ligands
are quite simple and could be readily proposed as structurally
similar replacements fortBu. However, the other ligand
searches will serve to demonstrate the necessity for a
computational screen to obtain diverse and novel ligands,
leading to potentially high activity catalysts.

The similarity search algorithm was also used to find
additional Cp′-type ligands. The Cp′ portions of both22,
C5Me5, and 28, C5H4(nBu), were the search targets, as
catalysts with these ligands possess activities substantially
above the norm (Table 1). When the Diversity database was
searched for structures similar to C5Me5, 12 hits resulted with
similarity >10%, three of which contained an aromatic
pentacycle similar to Cp. When the Diversity database was
mined for analogues of C5H4(nBu), 164 hits were produced
with >10% similarity, 18 of which possessed an aromatic
pentacycle moiety, leading to a total of 21 aromatic penta-
cycles in the Diversity database similar to either C5Me5 or
C5H4(nBu). This list was pared down further with fluxional
Model 5 of Table 3, which was used to predict the activities
of newly formed catalysts consisting oftBu groups for R
and the 21 aromatic pentacycles in place of Cp′. Four Cp′-
type ligands led to catalysts with high predicted activities,
and these are the final hits, shown in Chart 2, of the
similarity-based Cp′ search of the Diversity database. As the
similarity search Diversity database yielded 185 hits, or
roughly 10% of the entire database, the far larger Plated
database was not mined in this fashion.

Descriptor-Based Search.The first step in performing
what is termed the descriptor-based search is the calculation
of descriptors for an entire compound database. The freely
available program chosen for descriptor evaluation in this
work, E-Dragon, can only calculate the descriptors of 150
molecules at a time. Thus, databases containing more than
150 compounds require multiple runs that, to the best of our
knowledge, cannot be automated. While this restriction is
merely impractical for the smaller Diversity database,
requiring 14 separate submissions, it is very restrictive for

Figure 3. Summary of the database mining procedures used. See text for
details.

Chart 1. Newly Proposed R-type Ligandsa

a The cross indicates the point of attachment to P(dN-Ti).
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the 140 000-member Plated database. Therefore, only the
Diversity database was mined in the fashion described below.

The key to this procedure is the identification of the
descriptors for each ligand type that most strongly correlate
with high predicted activities. While it is possible to simply
investigate the PLSR results of the models shown in Table
4, the goal is to search for new R-type and Cp′-type ligands
independently from one another; the models in Table 4
predict activities based on the simultaneous contribution of
both ligand types. Therefore, new heuristic 2D-QSAR models
were constructed by taking only the Cp′ ligand geometry of
the catalysts in Table 1 where R) tBu, that is, a lone Cp
group from13, a C5H4SiMe3 group from20, and similarly
for 22, 24, 27, 28, and44. As each catalyst contains the same
R ligand, the variation in activity can be attributed solely to
the choice of Cp′ group. Therefore, the activity of each
individual Cp′-type ligand was set to the value listed in Table
1 for the entire catalyst. From this Cp′-only input, 2D-QSAR
models were built as before and the PLSR data were
inspected to identify the 10 descriptors most important in
determining activity. For each of these descriptors, standard
deviations were calculated across all compounds in the
Diversity database. Next, the compound with the highest
overall value was tabulated for each of the 10 descriptors,
as were all compounds possessing descriptors within 2 SDs
of each maximum value. Considerable redundancy among
the hit lists for the 10 descriptors resulted in a total of 44
compounds in this table, 11 of which contained an aromatic
pentacycle. This list was pared down somewhat by using
the 3D-QSAR Model 5 of Table 3, with R set totBu and
Cp′ set to each of the 11 hits. Five ligands outperformed the
other seven, and these are given in Chart 3. These ligands
are all substantially larger than even the largest Cp′-type
ligand listed in Table 1. Thus, to investigate the effect of
their larger sizes, new ligands were also proposed consisting
of the ligands in Chart 3 truncated at the point indicated by
the jagged line. Ligand3 was not trimmed in this fashion,
as it was initially considered in two forms, ligated to Ti via
the furan ring (as shown) or via the central pyrrole ring; the
latter was revealed by the 3D-QSAR screen mentioned above
to lead to poorer activity and was thus removed from the hit
list. Overall, the nine ligands described by Chart 3 represent
the final output of the descriptor-based screen of the Diversity

database for Cp′-type ligands. An attempt to locate new
R-type ligands using this approach produced no ligands of
a size to attach to the P atom of Ti-NdP along with two
other R-type ligands.

The database mining procedures described above could
certainly be tailored, depending on the desired result. In this
study, improvements at both the R and Cp′ sites were sought.
Thus, because newly proposed ligands at one site must be
crossed with all proposed ligands at the other site, hit lists
were aggressively trimmed multiple times to avoid a com-
binatorial explosion. This approach is especially necessitated
by our preferred 3D-QSAR approach, where up to five
rotamers must be created for each Cp′-type ligand to address
fluxionality. However, if only a single ligand site were of
interest, or if an entirely static 3D-QSAR model were
employed to predict catalyst activities, fewer ligands could
be removed from database mining results.

To summarize, five R-type ligandssA-D of Chart 1, as
well astBu to serve as a controlsand 14 Cp′-type ligandss
1, 1b, 2, 2b, 3, 4, 4b, 5, and5b in Chart 3, as well as6-9
in Chart 2, and the control of Cpsresulted from the database
mining procedures of Figure 3, leading to 69 new catalysts
when crossed (thetBu/Cp cross is simply13). The predicted
activities of these new catalysts, using both the 3D- and 2D-
QSAR approaches described above, can now be discussed.
The entire procedure used to propose new catalysts and
predict their activities is summarized in Figure 4.

Predicted Activities of New Catalysts. 3D-QSAR.Figure
5 shows the predicted activities, using the six 3D-QSAR
models given in Table 3, for the Ti-NdP-type catalysts
formed from the 13 newly proposed Cp′-type ligands with
R ) tBu. The predicted activities in this figure are fairly
consistent regardless of the specific fluxional 3D-QSAR
model used; similar consensus is noted in similar plots where
R ) A-D. The standard deviations across the six models
in Figure 5 range from 30 (for ligands6 and9) to 66 (for
ligand5). The model indicated in Table 3 as possessing the
best external predictivity, Model 5, tends to yield the highest

Chart 2. Newly Proposed Cp′-type Ligands, from a Similarity Search
of the Diversity Databasea

a Ligation to the Ti(-NdP) is through the aromatic pentacycle.

Chart 3. Newly Proposed Cp′-type Ligands, from a Descriptor-Based
Search of the Diversity Databasea

a The jagged line indicates removal of the smaller part (or the aliphatic
part, in the case of5), leading to the creation of1b, 2b, 4b, and5b. Ligation
to Ti is through an aromatic pentacycle, indicated by an asterisk when this
is ambiguous.
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predicted activities. The activities predicted with this model
for all newly proposed catalysts are given in Table 5.

Starting with the last row of this table, it is seen that only
ligand D represents an improvement in the R-type ligand
over tBu, and this improvement is marginal. Moreover, while
no newly proposed catalyst outperforms the best original

catalyst,28, which has a predicted activity of 1634 with
Model 5 of Table 3 (actual) 2000), the Cp′-type ligands
arrived at through the descriptor-based mining process (1-
5) all lead to catalysts that outperform thesecond best
original catalyst,22 (predicted) 1098, actual) 1400), when
R ) tBu. Finally, truncating the especially large Cp′-type
ligands does not have a large effect on predicted catalytic
activities.

2D-QSAR. In stark contrast to the 3D-QSAR results, the
different 2D-QSAR models are most certainly not in
quantitative agreement with each other. Moreover, the
predicted activities (Table 6) of new catalysts using the best
2D-QSAR model, no. 4 of Table 4, cover a range far broader
than that indicated by 3D-QSAR. Indeed, the most successful
catalyst as measured by 2D-QSAR has a predicted activity
over 65 times greater than the best experimentally measured
catalyst activity in Table 1, which, absent an experimental
confirmation, seems to give reason for skepticism about the
quantitative accuracy of the results in Table 6. Additionally,
a comparison of the full Cp′-type ligands1, 2, 4, and5 with
their truncated partners reveal that, unlike the 3D-QSAR
results, the trimmed ligands have severely lower predicted
activities compared to their untrimmed counterparts. The
most extreme example is the contrast betweenA(tBu)2-5 and
A(tBu)2-5b, where the catalyst built from the truncated ligand
shows a predicted activity of only 2.1% of the catalyst built
from the full ligand. It seems unlikely that the mere
elimination of an admittedly sizable side group could have

Figure 4. Summary of the overall procedure used to propose new catalysts
and predict their activities.

Figure 5. 3D-QSAR predicted activities for the newly proposed catalysts
where R) tBu.

Table 5. Predicted Activities for All New Catalysts, Using 3D-QSAR
Model 5 of Table 3

R

Cp′ A(tBu)2 B(tBu)2 C3 D2(tBu) (tBu)3

1 776 794 852 898 1370
1b 795 813 871 915 1391
2 774 794 855 901 1353
2b 794 814 875 921 1373
3 778 790 824 898 1345
4 791 809 866 927 1397
4b 797 814 872 934 1411
5 916 934 994 1036 1518
5b 822 842 904 949 1425
6 893 911 971 1018 988
7 926 943 1004 1047 1013
8 901 919 982 1019 989
9 906 924 993 1030 991
Cp 812 829 892 933 901a

a This is the predicted activity of13 (actual) 652).

Table 6. Predicted Activities for All New Catalysts, Using 2D-QSAR
Model 4 of Table 4

R

Cp′ A(tBu)2 B(tBu)2 C3 D2(tBu) (tBu)3

1 73 624 83 288 99 368 94 088 73 254
1b 2425 2456 3747 3386 2556
2 66 770 59 010 71 444 61 784 54 798
2b 2785 2874 6695 3973 2961
3 82 615 95 615 119 986 90 465 85 448
4 65 040 61 862 93 850 98 158 70 285
4b 7934 8069 27299 6921 7286
5 113 275 107 750 128 900 129 770 100 825
5b 2350 2400 3110 3253 2486
6 8436 8526 18554 8489 6932
7 10 128 10 310 24 134 12 666 8900
8 5639 5669 21495 7454 5423
9 22 921 22 666 36 501 42 465 21 362
Cp 2237 2276 2832 2918 792a

a This is the predicted activity of13 (actual) 652).

Table 7. The 10 Most Active Catalysts as Predicted by Model 4 of
Table 4 and the Ranking of These Catalysts Predicted by the Other
2D-QSAR Models

rankings within each 2D-QSAR model

R Cp′ 4 1 2 3 5 6

D 5 1 3 2 3 2 1
C 5 2 1 1 1 1 2
C 3 3 10 3 5 3 3
A 5 4 6 4 2 4 4
B 5 5 7 5 4 5 5
(tBu)3 5 6 12 6 8 7 8
C 1 7 4 7 7 6 7
D 4 8 15 8 12 9 6
B 3 9 23 11 15 11 9
D 1 10 2 10 9 8 10
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such a severe impairment on putative catalytic activity.
However, despite these noted doubts about the numerical
accuracy of the results, the 2D-QSAR results may prove to
be qualitatively valid, and thus, two further observations will
be offered. First, as opposed to the observation with 3D-
QSAR, the newly proposed R-type ligands are all better than
tBu when Cp′ ) Cp. Second, all newly proposed catalysts,
even those with only an R-type substitution, have predicted
activities greater than the most active original catalyst,28
(predicted activity) 2024). This result again differs from
the findings of 3D-QSAR. In order to definitively determine
which finding is correct, further experimental results are
required; however, absent such work, some insight may be
possible by considering the strengths and drawbacks of each
technique.

IV. Discussion

Applicability of 3D-QSAR to Rational Organometallic
Catalyst Design. Perhaps the most disappointing result
obtained with the 3D-QSAR approach is that no newly
proposed catalyst has a predicted activity higher than that
predicted for28. Figure 6 provides a graphical representation
of a typical 3D-QSAR model and serves to illustrate why
this is so. In addition to the patchwork of red areas (where
increased bulk leads to increased activity) and cyan areas
(where increased bulk leads to decreased activity) observed
for most of the molecule, there is also a solidly red area in
the upper right, corresponding to thenBu group of28. This
catalyst is the only species that contains steric bulk in this
area, and given that its activity (2000) is so much higher
than the second most active catalyst,22 (1400), this
substituent tends to dominate the steric field. If a large Cp′-
type ligand, such as those given in Charts 2 and 3, is
proposed as a new catalytically active ligand, proper align-
ment leads not only to population of the red, highly active
nBu portion of the 3D map but also to population of cyan
portions of the map around Cp′ in addition to black portions
where 3D-QSAR simply does not measure any correlation

between steric bulk and activity. Thus, in essence, the failure
to predict any catalysts superior to28 is nothing more than
sampling error. If the experimental data on which the 3D-
QSAR model is trained were expanded to include additional
ligands similar in size to the C5H4(nBu) group of28, this
error could be rectified.

However, the 3D-QSAR technique is still of use absent
supplemental experimental data. As can be seen in Table 1,
14 catalysts possess low (i.e.,<50) experimentally deter-
mined activities. There is then a gap until24, with an
experimentally measured activity of 425, which can be
defined as the beginning of the set of catalysts with medium
activity. In Figure 7, the actual activities of the catalysts in
Table 1 are plotted against their activities predicted with
fluxional 3D-QSAR Model 5 (Table 5). Of the 14 experi-
mentally low activity catalysts, Figure 7 indicates that eight
are predicted by 3D-QSAR as possessing an activity of<50,
with another five predicted to be<425, the experimental
threshold for the medium activity catalysts. Indeed, only one
low activity catalyst,21, is identified as a catalyst of medium
activity. It therefore appears that the 3D-QSAR technique
described in this work, at least for the Ti-NdP system, can
act as an effective virtual screen, capable of identifying,
before investment of experimental resources, low activity
catalysts not worth synthesizing.

Applicability of 2D-QSAR to Rational Organometallic
Catalyst Design.The 2D-QSAR predicted activities of Table
6, which differ from both the experimentally measured
activities of Table 1 and the 3D-QSAR predicted activities
of Table 5 by orders of magnitude, may seem to be grounds
for dismissal of the 2D-QSAR approach as useless in
predicting organometallic catalyst activities. However, the
current results seem to yield useful trends, if not useful
quantitative results, as shown in Table 7, where the 10 most
active catalysts, as predicted by the best 2D-QSAR model
(Model 4 of Table 4) are described. Also given are the
rankings for these new catalysts, out of a total of 69,
predicted with the other 2D-QSAR models. As can be seen,
there is a great deal of consensus among the six 2D-QSAR
models, despite the elimination of different descriptors for
each model using the GA, different identities of the LVs

Figure 6. Illustration of the 3D-QSAR steric field constructed for Model
5 of Table 2. Red indicates areas where increased steric bulk correlates to
increased activity; the cyan areas indicate areas where increased steric bulk
leads to decreased activity. The structure of catalyst28 is shown, with the
nBu group in the upper right.

Figure 7. Actual activities for the catalysts in Table 1 plotted again their
activities predicted by 3D-QSAR Model 5 of Table 3. The line isx ) y,
indicating perfect correlation. Catalysts in the training set are indicated with
filled squares; the members of the test set are shown by open circles.
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created with PLSR, and different weightings of the descrip-
tors within each LV. In other words, it appears that the
procedure in this paper may be able to successfully identify
which chemical properties/descriptors correlate most with
catalytic activity, even if the numerically extrapolated
formulas used to predict activities of new catalysts are
flawed.

Evaluation of the Database Mining Techniques.The
stated reason for using database mining in this work is to
identify a small number of potentially high activity ligands
within a far larger set of ligands. Predicted activities for new
catalysts based on these newly offered ligands are mixed:
2D-QSAR indicates an unmitigated success; 3D-QSAR
indicates a failure to identify useful R-type ligands, although
new Cp′-type ligands seem promising. However, the Cp′-
type ligands indicated in Charts 2 and 3 all possess a common
feature that represents a crucial drawback: at least one, and
often many, basic donor sites that will tend to preferentially
coordinate to the acidic Ti site, preventing the metal-aryl
interaction at work in the Cp′-Ti-NdP framework. Even
if these sites could somehow be sterically blocked from
attacking Ti, these pending groups may be easily protonated,
leading to complications in synthesis and purification.
Although one could propose modifying the ligands in Charts
2 and 3 to remove these problematic substituents, such an
approach defeats the purpose of database mining as an
automated means to identify promising ligands. Given that
“synthesizability” is not a solved problem even in the far
more mature realm of drug design, it seems perhaps overly
optimistic to expect that database mining will, in a black
box fashion, result in ligands immediately ready to use in
catalyst design; chemical intuition is still a necessary
ingredient for identifying promising avenues of catalyst
refinement. It may be promising to consider mining databases
that contain ligands known to be amenable to organometallic
synthesis, such as ones derived from the CSD, rather than,
as was the case in the current work, databases whose
compatibility with organometallic synthesis is lacking or
unknown.

V. Conclusions

In the case study of this work, the experimentally
characterized activities of catalysts based on a synthetically
flexible Ti-NdP framework were rationalized using two
techniques common to drug discovery: 3D- and 2D-QSAR,
as implemented in freely available and easy to use software
applied with a black box approach. In the former technique,
molecular shape is taken as determinative of catalyst activity;
in the latter, more general molecular properties in general
are considered. For the specific system, 3D-QSAR results
were found to depend on proper treatment of the highly
mobile Cp′-type ligand. However, once this condition was
accounted for, models were constructed with reasonable
statistical measures of significance. The black box approach
to 2D-QSAR necessitated the replacement of Ti with C;
difficulties inherent to the technique, such as the choice of
how many latent variables to include in the model, also
required careful consideration. Of the final models con-

structed, only one showed useful levels of statistical signifi-
cance. Two database mining procedures were considered to
identify ligands that may lead to highly active catalysts when
used as R- or Cp′-type ligands. For the former site, ligands
identified thusly were trivial; for the latter, ligands seemed
to be of dubious experimental significance. Both of these
shortcomings can likely be addressed through a more
intelligent choice of ligand database to be mined, as well as
judicious application of chemical intuition to select synthetic
avenues likely to prove fruitful.

Even without such ingredients, however, new catalysts
based on mined ligands were constructed in silico to evaluate
the applicability of the QSAR approaches for predicting
activities. For 3D-QSAR, no difficulties in the black box
approach were identified beyond the necessity to account
for Cp ring whizzing. Due to an unbalanced steric field, one
spatial area dominated constructed models, and thus, no
catalysts were identified with predicted activities better than
the best already known catalyst. However, this finding is
not inherent to the approach, and evidence indicates that 3D-
QSAR should prove useful, at the very least, in identifying
low activity catalysts. For 2D-QSAR, the black box approach
proved especially limiting, as not only was the method unable
to accommodate Ti but also the molecular properties upon
which the models were based were developed to apply to
organic molecules and thus might be misleading or unin-
formative if a metal atom is introduced. It is expected that
custom-designed descriptors, such as have been used else-
where,21,50 should help obviate this difficulty. Given these
caveats, it is perhaps unsurprising that the different 2D-
QSAR models varied tremendously in their predicted activi-
ties and that these activities were orders of magnitude away
from the 3D-QSAR predictions. However, qualitative com-
parisons give hints that the 2D-QSAR technique may be
capable of successfully identifying molecular properties
influential on catalyst activity, even if such activities cannot
be reliably calculated.

All in all, the computational techniques used in this study,
developed to study molecules without metal atoms, are
surprisingly adept at dealing with organometallic compounds
where the metal atom dominates. If the limitations identified
in this worksspecifically a need for a balanced exploration
of 3D space for 3D-QSAR model generation, the need to
utilize descriptors compatible with organometallic systems
for 2D-QSAR model construction, and the need to search
databases of more relevance to organometallic systemsscan
be addressed, which should be possible in future work,
computational drug discovery tools should assume an
important role in identifying promising ligands usable in
catalysts with new and beneficial properties.
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